
Collaboration and the Knowledge Economy: Issues, Applications, Case Studies
Paul Cunningham and Miriam Cunningham (Eds)
IOS Press, 2008 Amsterdam
ISBN 978-1-58603-924-0

BALTICTIME – the Demonstration of Open
Source Technologies Application for Legal
and Accountable Digital Time Stamping
Rimantas MIŠKINIS1, Bogdan MALYŠKO2, Dmitrij SMIRNOV1, Emilis URBA1,

Andrius BUROKAS1, Peeter LAUD3, Monika OIT3, Francesco ZULIANI4,
Marco MESSINEO4, Aldo FANELLI4, Jerzy NAWROCKI5, Pawel NOGAS5,

Leona BANZAITYTĖ6, Vitalijus SIMANAVIČIUS6

1Semiconductor Physics Institute, A. Goštauto 11, Vilnius, LT-01108, Lithuania
Tel: +370 5 2620194, Fax: +370 5 2627123, Email: time@pfi.lt

2State Tax Inspectorate, Vasario 16-osios 15, Vilnius, LT-01514, Lithuania
Tel: +370 5 2687506, Fax: + countrycode localcode number, Email: b.malysko@vmi.lt

3Cybernetica AS, Akadeemia Tee 21, Tallinn, 12618, Estonia
Tel: +372 6 542422, Fax: +372 6 397992, Email: peeter@tartu.cyber.ee

4Nergal S.r.l., Viale Battista Bardanzellu 8, Roma, 00155, Italy
Tel: +39 0 640801173, Fax: +39 0 640801283, Email: zuliani@nergal.it

5Astrogeodynamical Observatory of Space Research Centre P. A. S.,
 Bartycka 18a, Warszawa, 00-716, Poland

Tel: +48 61 8170187, Fax: +48 61 8170219, Email: j.nawrocki@cbk.poznan.pl
6Applied Research Institute for Prospective Technologies,

 J.Galvydžio 5,Vilnius, LT-08236, Lithuania
Tel: +370-5-2745845, Fax: +370 5 2745459, Email: protecho@protechnology.lt

Abstract: The overall objective of the BALTICTIME project is to develop the legal
and accountable Digital Time Stamping (DTS) system providing the layer of Trust in
eGovernmental transaction environment and to demonstrate system performance for
time critical functions. The main technological tasks of BALTICTIME are: to
develop the interface between National Time Standard Authorities, keepers of
National Coordinated Time Scales UTC(k), and Time Stamping Authorities TSA; to
develop the issued time stamps archiving system integral with UTC(k) Time Scale;
to develop security system based on interoperable certificate data base; to
demonstrate BALTICTIME system performance for eGovernment services with a
cross-border time stamping possibilities. All components of the BALTICTIME
system are developed using open source LINUX UBUNTU software technologies
and fitted for the hardware common for the National Time Standard laboratories.
Presented test results demonstrate the BALTICTIME system capabilities and
compatibility to the requirements of international standards.

1. Introduction
Electronic signature is an increasingly important data protection mechanism used for
security and trust in electronic business, electronic services and communications for
generating non-repudiation evidence and receiving legal recognition. In many countries the
laws and regulations have been adopted which equalize the use and functions of digital
signature to handwritten signature. A typical approach to secure digital signatures as non-
repudiation evidence relies on the existence of an on-line trusted Time Stamping Authority
(TSA). Each newly generated digital signature has to be time-stamped by a TSA so that the

Copyright © 2008 The Authors

mailto:time@pfi.lt
mailto:b.malysko@vmi.lt
mailto:peeter@tartu.cyber.ee
mailto:zuliani@nergal.it
mailto:j.nawrocki@cbk.poznan.pl
mailto:protecho@protechnology.lt

trusted time of signature generation can be identified. Such an approach may be employed
in high value transactions where security is the most important requirement.

However, TSA being integral part of eGovernment services using electronic signatures
is to large extent responsible for the confidence and accountability of the service.
Technological solutions for time stamping services need to be proposed as integral for
Enlarged Europe approach overcoming obstacles hampering eGovernment services
acceptance by end users: low trust on existing solutions due to disputed time stamp
accountability and fragmentation of eGovernment services on European level.

BALTICTIME project is designed to enhance the confidence on time stamping service
through adopting capacities of Time Standard Authorities of EU metrology system as most
authoritative and reliable backbone for Time Stamping Authority. In such a way level of the
confidence and accountability of the service eligible for employment in eGovernment
services will be created and integral for Europe solution having strong potential to
overcome existing fragmentation will be introduced.
 The overall objective of the BALTICTIME project, which is under implementation
from 2006, is to develop the legal and accountable Digital Time Stamping (DTS) system
providing the layer of Trust in eGovernmental transaction environment and to demonstrate
DTS system performance for time critical functions or validation data for digital signature.
 The main technological tasks of BALTICTIME are:
1. To develop the interface between National Time Standard Authorities, keepers of

National Coordinated Time Scales UTC(k), and Time Stamping Authorities;
2. To develop eDocuments archiving system integral with time scale generator traceable

with Universal Coordinated Time Scale (UTC);
3. To develop security system based on interoperable certificate data base;
4. To demonstrate BALTICTIME system performance for eGovernment services with a

cross-border time stamping possibilities.
All components of the BALTICTIME system are developed using open source software

technologies LINUX UBUNTU distribution and fitted for the hardware common for the
National Time Metrology laboratories. Technical specifications will be assessed according
to requirements of the standards [1 – 4].

2. Architecture of the BALTICTIME System
To cope with a large number of time stamping requests, the TSA has been deployed in a
distributed manner, with one of the sites acting as a main system (TSA main site), keeping
its subsystems (Time Stamping Units (TSU), Archive Units (AU) and others) synchronized
with the Universal Coordinated Time Scale (directly connected to the National Metrology
Institute (NMI)), while the other sites (TSA remote sites) synchronized and linked with the
main site. A distributed system can also provide better availability which is important in
time stamping applications where some party is always interested in obtaining the
timestamp as soon as possible.

3. Timing Subsystem
The timing subsystem generates local TSA timescale, keeps it synchronized to UTC(k)
generated by National Metrology Institute and provides it to the all components of main and
remote TSA sites. The key parts of time mark synchronization system are:
1. TSA timing Subsystem (located in TSA Main Site);
2. NMI timing Subsystem (located in NMI);
3. Remote Timing Subsystem (located in TSA Remote Site).

Copyright © 2008 The Authors

 Time Stamping Authorities will issue the legal Time Stamps (TS), id est TS should be
traceable with UTC(k). The main purpose of TSA Timing Subsystem is to generate TSA
local time scale synchronized to UTC(k) - time scale generated by National Metrology

Inst

wit
tim
leas

inte
Uni
bad
uni

Cop

Figure 1. Architecture of the BALTICTIME system. UTC(k) – Universal Coordinated Time Scale

of the “k” National Metrology Institute
itute (NMI) and provide it to Time Stamping Units (TSU) of Time Stamping Authority.
In order to provide system redundancy TSA Timing Subsystem should be equipped
h at least 3 time standards. Frequency stability of time standards depends on required
e stamping resolution. System after initial synchronization must work autonomously at
t for 10 days without external time comparisons to NMI.

1PPS
rval c
t shou
-work
t shou

yrigh
INTERNET

AU1 AU3AU2

TSU1 TSU2 TSU3

Timing and Control
Communications

Control Unit (CU)

CDB

Application
Server

TSA clock
UTC(k)

SOAP
Messages

30001 – TSU port
40002 – AU, CU port

Figure 2. Structure of the BALTICTIME system Main Site.
 signal from time standards should be connected through multiplexer and time
ounter to Timing Subsystem’s Control Unit and compared continuously. Control
ld be able to detect improper results from one of time standards, and eliminate the
ing time standard. In case when less than 2 time standards work correctly control
ld stop the time stamping process.

t © 2008 The Authors

 To provide required accuracy, and for security reasons Trusted TSA must be
synchronized to NMI using at least two independent methods. Use of GNSS based time
transfer as a primary method , and NTPv4 as secondary method is recommended. Required
accuracy of time transfer methods depends from required time stamping resolution.

4. Time Stamping Units
BALTICTIME's timestamping unit (TSU) implements an RFC3161-compliant
timestamping server, also including the security-enhancing extensions specific to
BALTICTIME. The implementation is based on the open-source cryptographic library
OpenSSL, and in particular its extension OpenTSA implementing the functionality
described in RFC3161. OpenTSA implements a typical hash-and-sign timestamping server
where the document digest contained in a client's query is signed by the timestamping
server, using a dedicated signing key. Key management of the TSU is done according to the
standard [ETSI TS 102 023 v1.2.1]. The certificates for the public key are distributed in the
same way as certificates for signing keys of any other party. In such a timestamping system,
the leakage of the server's signing key would mean the invalidation of all timestamps issued
with this key, unless the signing time of those timestamps can be determined using other
means. To protect against such leakage, and to also prevent a malicious timestamping
server from reordering the timestamps, all timestamps issued by the same TSU are
submitted to the archive unit (AU) that will link them together using a one-way hash
function (refer to the description of the AU for a more thorough description of linking).
 The current state of the linking chain (called the last linking item, and having the size
comparable to the size of the output of the hash function) has to be periodically included in
the timestamps to complete the chain of one-way dependencies between different
timestamps. Hence the TSU will periodically (preferably before each time it issues a
timestamp) query the AU for the last linking item. This item is included in the timestamps
as a signed attribute (RFC3161 contains provisions for this). Tha details of such inclusion
were worked out in the scope of Baltictime project. The implementation of the TSU
consists of the necessary modifications to OpenTSA to construct timestamps also
containing the last linking item (implemented in C), as well as a small program
communicating with the client and the AU, implementing the necessary protocol logic, and
using the modified OpenTSA-library (implemented in OCaml).

5. Archival Units
The archival unit keeps a log of timestamping server's activity, thereby allowing to audit it
and to compare the timestamps after the keys used to sign them have expired. The archival
unit achieves this objective by linking the timestamps together using a one-way
cryptographic hash function.
 Since a TSA may have multiple TSUs, and hence multiple sites, the audit mechanism
must take into account that two timestamps might have been issued by different TSUs. In
order to create a single arrow of time between two timestamps issued by two different
TSUs the archival units periodically send their last log item to all of the other archival units
in order for them to include it in their linking items chain. In this way it is possible to create
a linking chain between two timestamps stored in two different archival units.
 A cryptographically secure hash function h has been fixed. It is used to link the log
items together. The hash function is not hardcoded, but the archival unit stores its identity.
If necessary, the hash function may be changed (although this is supposed to be an
infrequent and always an extraordinary event). The chosen hash-function must be
considered collision-resistant for the foreseeable future. The log is a set of items of the form
(n, Xn, Ln), where Xn is the n-th bitstring (timestamp) saved in the log and Ln = h(Xn, Ln-1) is

Copyright © 2008 The Authors

the linking information. The log items may also need to store the source of the bit-string Xn

(which may be the TSU, or the time mark synchronization unit, or the control system, or
some remote archival unit) and the recipient(s) of Ln, if there are any (they may be the TSU
or some remote archival units).
 The configuration of the archival unit must include the addresses of other archival units,
with whom the linking information is exchanged. For each archival unit we have to store its
address (probably an IP address and a port number) and the frequency of synchronization.
 The TSA Archive System main functionalities are:
• To store issued timestamp and timestamps linkage information;
• To send periodically the last link item information to other archives to link them.
 The Archival Unit consists of a database and software performing the required accesses
to the database and the network communications with other modules such as the TSU and
the other remote archive units. The Archival Unit relies on a relational database system to
store its data. Since the usage of open source technologies was strongly suggested, the
chosen database system is MySQL. The application interaction to the MySQL database is
carried out using the MySQL++ library. This library is a C++ wrapper of the standard
MySQL development libraries to interact with MySQL databasei. This is referred to as the
official C++ opensource wrapper of the MySQL connector ANSI C driver.
 The communication between Archive Unit and other connected modules is carried out
through network protocols in a TCP socket connection. The archival unit works as a server
responding to requests that other modules perform. Any TCP/IP network connections and
communications is carried out using the library “C++ Sockets ”ii. In order to encode and
decode all the messages that the archival unit exchanges with the other modules, an open-
source external package that handles ASN1 has been usediii. The generated code has been
included in the archival unit software as a static library. Data hashing and base64 encoding
is achieved using the open-source OpenSSL libraryiv. Implemented scheme of Archival
Units linking has not attempted before [6].

6. User Interface
The TSA Main Site which configuration is presented in Figure 2 serve the needs of small
users. For the connection between the small user and TSA, WebServices are used. The user
will have a possibility to write their own client application, using any programming
environment and language. The necessary information to do that is be available in the
WSDL (Web Service Description Language) file and additional documentation is also
available at the TSA internet site. As an alternative there are premade user Java applets
published on TSA web site. Those applets provide all needed functionality for time stamp
generation and time stamp linking chain verification. The only stipulation for client applet
usage is that the user must have installed on his/her PC the JAVA run-time environment.

To be able to use the TS service, a small user will has to register. The registration
procedure is simplified for project purposes; the user must only provide username,
password and user security certificate. To ensure the security, transparency and reliability
of the service, there is no application for the generation of the key pair (private and public
keys). The user has to generate the key pair manually with JAVA KeyTool (the detailed
instructions is available in the site). JAVA KeyStore issued for the storage of user
certificate and private key. For the project purposes, self-signed certificates are allowed. In
the final version of the TSA only trusted CA’s will be accepted and CRL (Certificate
Revocation List) checked. The user will have to enter his username, select the private key
from the password-protected KeyStore, and then browse for the file to be time-stamped.
The user will be able to choose between several hash algorithms to be used for file hash
calculation. The following data will be sent to the server: the username, hash, hash
algorithm and a signature calculated from hash string with the user private key. After the

Copyright © 2008 The Authors

submission of the data, the username and certificate is used by the TSA to identify the user.
TSA will use the user’s public key (from the Certificate submitted at registration) to verify
the sender’s identity and request integrity as well as to authorize the provision of the TS
service. Applet sends the above mentioned data set to the TSA’s WebService using HTTPS
connection. All data are sent using the SOAP protocol message (look in Appendix).
Application server will create ASN1 encoded request to the TSU and will then send it to
TSU server through socket connection (TSU server selection is load balanced).
 Response is also in SOAP format and consist the Base64 encoded string representing
the encoded bytes of the TimeStamp.

7. Test Results
BALTICTIME system was assembled using PCs with: CPU - Intel Core 2 Duo E4400 2
GHz; RAM – 1 GB; HDD – 160 GB. All PCs were running on the LINUX UBUNTU 7.10
Server edition. The first test round was performed. The aim of tests was to determine the
time stamping service processing time at the system different loadings. First round tests was
performed sending time stamp requests from the user located at the same network node as
the BALTICTIME system.

Time stamps requests were sent in two modes – serial and parallel. In serial mode the
next time stamp request was sent after receiving the response for previously request.

Typical results are presented in Figure 3. Mean value of the time stamp response is in
the range of 24 ÷ 25 ms. Test results demonstrate that BALTICTIME system able to issue
up to 25 time stamps per second. The largest obtained response time not exceed 100 ms.

0 20 40 60 80 100

0

20

40

60

80

100

re
sp

on
se

 ti
m

e,
 m

s

request number

Figure 3. Dependency of Time Stamp Issuing Time (Response Time) on the Time

Stamp Request Number at Serial Mode Tests

Copyright © 2008 The Authors

Parall
stream. T
parallel m
Server w
show tha
response
time stam

8. Co
All comp
technolog
for the N
according
system a
Obtained
developm

Referen
[1] ETSI

Forma
[2] ETSI T
[3] ETSI

for tim
[4] RFC 3
[5] J. Cry

Docum
[6] Arne

Stamp
375.

i http://tan
ii http://ww
iii http://lio
iv http://ww

Copyrigh
0 50 100 150 200 250 300 350 400

100

150

200

250

300

re
sp

on
se

 ti
m

e,
 m

s

request time,ms

Figure 4. Dependency of time stamp issuing time (response time) on the time stamp

request time at parallel mode tests. 50 time requests stream.
el mode tests was done by sending the concurrent time stamps requests in the one
he streams containing up to 300 requests was used. Test results obtained in the
ode are presented in Figure 4. Request time is a time mark fixed by Application

hen the time stamp request is delivered to the Time Stamping Unit. Test results
t 50 time request stream were processed during within 0,35 second and the mean
 time (time stamp issuing time) is 170 ms. Tests with the streams consisting of 300
p requests demonstrate a response time in the range from 0,8 to 1,6 second.

nclusions
onents of the BALTICTIME system are developed using open source software
ies LINUX, OpenTSA, OpenSSL, MySQL and fitted for the hardware common
ational Time Metrology laboratories. Technical specifications will be assessed
 to requirements of the standards. First test results demonstrate the BALTICTIME
bility to integrate into the eGovernment, eCommercial and other eServices.
 test results are a backbone for further BALTICTIME system tests and
ents.

ces
TS 101 733 v1.5.1 (2003-12) “Electronic Signatures and Infrastructure (ESI); Electronic Signature
ts”.
S 101 861 v1.2.1 (2002-03) “Time stamping profile”.

TS 102 023 v1.2.1 (2003-01) “Electronic Signatures and Infrastructure (ESI); Policy requirements
e-stamping authorities”.
161 (2001) “Internet X.509 Public Key Infrastructure Time – Stamp Protocol (TSP)”.
ptology 3(2): 99-111 (1991) Stuart Haber, W. Scott Stornetta: How to Time-Stamp a Digital
ent.

Ansper, Ahto Buldas, Märt Saarepera, Jan Willemson: Improving the Availability of Time-
ing Services. Information Security and Privacy, 6th Australasian Conference, ACISP 2001: 360-

gentsoft.net/mysql++/
w.alhem.net/Sockets/
net.info/asn1c
w.openssl.org

t © 2008 The Authors

	Introduction
	Architecture of the BALTICTIME System
	Timing Subsystem
	Time Stamping Units
	Archival Units
	User Interface
	Test Results
	8. Conclusions
	References

